Answer 1
Convert the sine term,
1-sin^2(x)-sin^2(x)=1-2sin^2(x)
(since sin^2(x)+cos^2(x)=1), solve for sin^2(x))
Answer 2cosē(x) - sinē(x) = 1 - 2sinē(x)
(1 - sinē(x)) - sinē(x) = 1 - 2sinē(x) ........ identity: sinē(x) + cosē(x) = 1
1 - 2sinē(x) = 1 - 2sinē(x)
1 = 1
proved
Answer: see above